论文标题

有条件的粒子过滤器,桥梁向后采样

Conditional particle filters with bridge backward sampling

论文作者

Karppinen, Santeri, Singh, Sumeetpal S., Vihola, Matti

论文摘要

带有向后/祖先采样的条件粒子过滤器(CPF)是从动态模型(例如隐藏的马尔可夫模型)的潜在状态的后验分布进行采样的强大方法。但是,这些方法的性能会因涉及弱信息观测和/或缓慢混合动态的模型而恶化。当对时间限制的连续时间路径积分模型进行微抽样时,这两种并发症都是出现的,但也可以使用隐藏的Markov模型发生。通常用CPF使用的多项式重采样过采样,过多地为弱信息观察重新样本,从而引入了额外的差异。此外,缓慢混合动力学使后向/祖先抽样步骤无效,导致了退化问题。我们详细介绍了两种有条件的重新采样策略,适用于弱信息性制度:所谓的“杀戮”重采样和采用平均部分顺序的系统重新采样。为了避免退化问题,我们引入了CPF的概括,并通过向后采样进行了辅助“桥接” CPF步骤,该步骤通过阻止序列进行了参数化。我们提出了选择适当阻塞的实用调整策略。我们的实验表明,具有合适的重新采样和开发的“向后抽样”的CPF可以导致弱信息和缓慢的混合状态的效率大幅提高。

Conditional particle filters (CPFs) with backward/ancestor sampling are powerful methods for sampling from the posterior distribution of the latent states of a dynamic model such as a hidden Markov model. However, the performance of these methods deteriorates with models involving weakly informative observations and/or slowly mixing dynamics. Both of these complications arise when sampling finely time-discretised continuous-time path integral models, but can occur with hidden Markov models too. Multinomial resampling, which is commonly employed with CPFs, resamples excessively for weakly informative observations and thereby introduces extra variance. Furthermore, slowly mixing dynamics render the backward/ancestor sampling steps ineffective, leading to degeneracy issues. We detail two conditional resampling strategies suitable for the weakly informative regime: the so-called `killing' resampling and the systematic resampling with mean partial order. To avoid the degeneracy issues, we introduce a generalisation of the CPF with backward sampling that involves auxiliary `bridging' CPF steps that are parameterised by a blocking sequence. We present practical tuning strategies for choosing an appropriate blocking. Our experiments demonstrate that the CPF with a suitable resampling and the developed `bridge backward sampling' can lead to substantial efficiency gains in the weakly informative and slow mixing regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源