论文标题

机器人臂姿势估计和基于深度学习模型的运动预测的框架

A framework for robotic arm pose estimation and movement prediction based on deep and extreme learning models

论文作者

Rodrigues, Iago Richard, Dantas, Marrone, Filho, Assis Oliveira, Barbosa, Gibson, Bezerra, Daniel, Souza, Ricardo, Marquezini, Maria Valéria, Endo, Patricia Takako, Kelner, Judith, Sadok, Djamel H.

论文摘要

随着协作机器人的使用提高了自动化过程中的效率和生产力,人类机器人的合作在行业4.0中已取得了显着的突出。但是,有必要考虑使用在这些环境中提高安全性的机制,因为文献报告说,风险情况可能存在于人类机器人协作的背景下。可以采用的策略之一是使用机器学习技术对协作环境的视觉识别,该技术可以自动确定场景中发生的事情以及将来可能发生的事情。在这项工作中,我们提出了一个新框架,该框架能够检测到行业4.0中常用的机器人手臂关键点。除了检测到,提出的框架还能够预测这些机器人臂的未来运动,从而提供相关信息,这些信息可以在识别人类机器人协作方案时考虑。所提出的框架基于深度学习机器技术。结果表明,所提出的框架能够以低错误检测和预测,这有助于减轻人类机器人协作中的风险。

Human-robot collaboration has gained a notable prominence in Industry 4.0, as the use of collaborative robots increases efficiency and productivity in the automation process. However, it is necessary to consider the use of mechanisms that increase security in these environments, as the literature reports that risk situations may exist in the context of human-robot collaboration. One of the strategies that can be adopted is the visual recognition of the collaboration environment using machine learning techniques, which can automatically identify what is happening in the scene and what may happen in the future. In this work, we are proposing a new framework that is capable of detecting robotic arm keypoints commonly used in Industry 4.0. In addition to detecting, the proposed framework is able to predict the future movement of these robotic arms, thus providing relevant information that can be considered in the recognition of the human-robot collaboration scenario. The proposed framework is based on deep and extreme learning machine techniques. Results show that the proposed framework is capable of detecting and predicting with low error, contributing to the mitigation of risks in human-robot collaboration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源