论文标题

有针对性的自适应设计

Targeted Adaptive Design

论文作者

Graziani, Carlo, Ngom, Marieme

论文摘要

现代高级制造和高级材料设计通常需要搜索相对较高的工艺控制参数空间,以实现最佳结构,属性和性能参数。从前者到后者的映射必须从嘈杂的实验或昂贵的模拟中确定。我们将这个问题抽象为一个数学框架,在数学框架中,必须通过昂贵的嘈杂测量结果来确定从控制空间到设计空间的未知函数,该测量找到最佳的控制设置,该设置在指定的公差内生成所需的设计功能,并具有量化的不确定性。我们描述了目标自适应设计(TAD),这是一种有效执行此采样任务的新算法。 TAD在每个迭代阶段创建了未知映射的高斯流程替代模型,提出了一批新的控制设置,以实验示例并优化了目标设计的更新的对数预测性的可能性。 TAD要么停止找到适合公差框内的不确定性的解决方案,要么使用预期的将来的信息来确定搜索空间已经用尽了,没有解决方案。因此,TAD以回忆但与贝叶斯优化和最佳实验设计的方式体现了探索探索张力。

Modern advanced manufacturing and advanced materials design often require searches of relatively high-dimensional process control parameter spaces for settings that result in optimal structure, property, and performance parameters. The mapping from the former to the latter must be determined from noisy experiments or from expensive simulations. We abstract this problem to a mathematical framework in which an unknown function from a control space to a design space must be ascertained by means of expensive noisy measurements, which locate optimal control settings generating desired design features within specified tolerances, with quantified uncertainty. We describe targeted adaptive design (TAD), a new algorithm that performs this sampling task efficiently. TAD creates a Gaussian process surrogate model of the unknown mapping at each iterative stage, proposing a new batch of control settings to sample experimentally and optimizing the updated log-predictive likelihood of the target design. TAD either stops upon locating a solution with uncertainties that fit inside the tolerance box or uses a measure of expected future information to determine that the search space has been exhausted with no solution. TAD thus embodies the exploration-exploitation tension in a manner that recalls, but is essentially different from, Bayesian optimization and optimal experimental design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源