论文标题

公平分配中福利最大化的近似性格局

Approximability Landscape of Welfare Maximization within Fair Allocations

论文作者

Bu, Xiaolin, Li, Zihao, Liu, Shengxin, Song, Jiaxin, Tao, Biaoshuai

论文摘要

公平分配不可分割的商品研究以公平的方式分配$ n $代理商之间的$ M $商品。尽管公平性是许多实际应用中的基本要求,但它通常与(经济)效率相抵触。这提出了一个自然而重要的问题:我们如何在所有公平分配中确定最福利有效的分配?本文从计算复杂性的角度回答。具体而言,我们研究了两个广泛研究的公平标准,最大程度地提高功利主义社会福利的问题:嫉妒的任何物品(EFX)(EFX)和嫉妒性最多一项(EF1)。我们检查了归一化和非均衡的估值,而标准化的估值要求每个代理商对所有项目的总效用都是相同的。 本文的关键贡献可以总结如下:(i)我们绘制福利最大化的完整复杂性格局,但要受到公平的分配约束; (ii)我们为EFX和EF1的公平价格提供了有趣的界限。具体:(1)对于$ n = 2 $代理,我们开发多项式近似方案(PTA),并为EFX和EF1约束提供NP硬度结果; (2)对于$ n> 2 $的代理,在EFX约束下,我们设计的算法分别用于$ O(n)$和$ O(\ sqrt {n})$分别用于未正函和归一化的估值。这些结果与渐近紧密的不易Xibibibibility结果相辅相成。我们还获得了EF1约束的相似结果。 (3)当代理的数量是固定常数时,我们表明可以通过稍微放松公平约束来在多项式时间内计算最佳解决方案,而精确的公平性会导致强烈的不适应性。 (4)此外,我们的结果暗示EFX的价格为$θ(\ sqrt {n})$,用于归一化估值,这在文献中是未知的。

Fair allocation of indivisible goods studies allocating $m$ goods among $n$ agents in a fair manner. While fairness is a fundamental requirement in many real-world applications, it often conflicts with (economic) efficiency. This raises a natural and important question: How can we identify the most welfare-efficient allocation among all fair allocations? This paper answers from the perspective of computational complexity. Specifically, we study the problem of maximizing utilitarian social welfare under two widely studied fairness criteria: envy-freeness up to any item (EFX) and envy-freeness up to one item (EF1). We examine both normalized and unnormalized valuations, where normalized valuations require that each agent's total utility for all items is identical. The key contributions of this paper can be summarized as follows: (i) we sketch the complete complexity landscape of welfare maximization subject to fair allocation constraints; and (ii) we provide interesting bounds on the price of fairness for both EFX and EF1. Specifically: (1) For $n=2$ agents, we develop polynomial-time approximation schemes (PTAS) and provide NP-hardness results for EFX and EF1 constraints; (2) For $n>2$ agents, under EFX constraints, we design algorithms that achieve approximation ratios of $O(n)$ and $O(\sqrt{n})$ for unnormalized and normalized valuations, respectively. These results are complemented by asymptotically tight inapproximability results. We also obtain similar results for EF1 constraints; (3) When the number of agents is a fixed constant, we show that the optimal solution can be computed in polynomial time by slightly relaxing the fairness constraints, whereas exact fairness leads to strong inapproximability; (4) Furthermore, our results imply the price of EFX is $Θ(\sqrt{n})$ for normalized valuations, which is unknown in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源