论文标题

伪造直到做到这一点:迈向准确的近分布新颖性检测

Fake It Till You Make It: Towards Accurate Near-Distribution Novelty Detection

论文作者

Mirzaei, Hossein, Salehi, Mohammadreza, Shahabi, Sajjad, Gavves, Efstratios, Snoek, Cees G. M., Sabokrou, Mohammad, Rohban, Mohammad Hossein

论文摘要

我们的目标是基于图像的新颖性检测。尽管取得了很大进展,但现有模型要么在所谓的“接近分布”设置下失败或面临急剧下降,在这种情况下,正常样本和异常样品之间的差异很细微。我们首先证明在近分布环境中的性能下降高达20%。接下来,我们建议利用基于得分的生成模型来产生近分分布异常数据。然后,对我们的模型进行微调以区分此类数据和正常样品。我们提供对该策略的定量和定性评估,并将结果与​​各种基于GAN的模型进行比较。通过在医学图像,对象分类和质量控制等各种应用程序中的数据集上进行广泛的实验,可以评估我们方法对近分布和标准新颖性检测的有效性。这表明我们的方法在现有模型上有了很大的改善,并始终减少近分布和标准新颖性检测性能之间的差距。代码存储库可从https://github.com/rohban-lab/fitymi获得。

We aim for image-based novelty detection. Despite considerable progress, existing models either fail or face a dramatic drop under the so-called "near-distribution" setting, where the differences between normal and anomalous samples are subtle. We first demonstrate existing methods experience up to 20% decrease in performance in the near-distribution setting. Next, we propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data. Our model is then fine-tuned to distinguish such data from the normal samples. We provide a quantitative as well as qualitative evaluation of this strategy, and compare the results with a variety of GAN-based models. Effectiveness of our method for both the near-distribution and standard novelty detection is assessed through extensive experiments on datasets in diverse applications such as medical images, object classification, and quality control. This reveals that our method considerably improves over existing models, and consistently decreases the gap between the near-distribution and standard novelty detection performance. The code repository is available at https://github.com/rohban-lab/FITYMI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源