论文标题
M级太阳耀斑的热和非热发射的时间演变研究
Study of Time Evolution of Thermal and Non-Thermal Emission from an M-Class Solar Flare
论文作者
论文摘要
我们在1.5-100 keV的能量范围内进行了宽频段X射线光谱分析,以研究2016年7月23日M7.6类火炬的时间演变,而微型X射线太阳能光谱仪(MINXSS)Cubesat和Reuven Ramaty Ramaty Ramaty High Energy Solar Solar Solar Solarspocopic Imager(Rhessi)SpaceCrapt。使用用于软X射线的MINXS和用于硬X射线的Rhessi的组合,非热组件和三个温度的多热组件 - “ cool”($ t \ $ 3 mk),“热”($ t \ $ t \ $ 15 mk),以及“超级热”($ t \ the super-hot”($ t \ of 30 mk) - simulsiess-simulse-smultane-s simultey-s simulteanse- simultease。此外,我们成功获得了具有10 s节奏的多热和非热成分的光谱演化,这与太阳能电晕中的Alfvén时间尺度相对应。我们发现,凉爽和热热组件的发射度量大大增加了数百次以上,并且在非热发射的峰值之后,超热热成分逐渐出现。我们还研究了Nobeyama无线电极化器(NORP)获得的微波光谱,我们发现从中等相对论的非热电子电子中存在连续的陀螺仪同顺ron发射。此外,我们通过使用大气成像组件(AIA)在太阳能动力学天文台(SDO)进行了差分排放度量(DEM)分析,并确定凉爽的血浆的DEM在耀斑的环内增加。我们发现凉爽和热的血浆成分与色层蒸发有关。超热等离子体成分可以通过被困在耀斑环中的非热电子的热化来解释。
We conduct a wide-band X-ray spectral analysis in the energy range of 1.5-100 keV to study the time evolution of the M7.6 class flare of 2016 July 23, with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft. With the combination of MinXSS for soft X-rays and RHESSI for hard X-rays, a non-thermal component and three-temperature multi-thermal component -- "cool" ($T \approx$ 3 MK), "hot" ($T \approx$ 15 MK), and "super-hot" ($T \approx$ 30 MK) -- were measured simultaneously. In addition, we successfully obtained the spectral evolution of the multi-thermal and non-thermal components with a 10 s cadence, which corresponds to the Alfvén time scale in the solar corona. We find that the emission measures of the cool and hot thermal components are drastically increasing more than hundreds of times and the super-hot thermal component is gradually appearing after the peak of the non-thermal emission. We also study the microwave spectra obtained by the Nobeyama Radio Polarimeters (NoRP), and we find that there is continuous gyro-synchrotron emission from mildly relativistic non-thermal electrons. In addition, we conducted a differential emission measure (DEM) analysis by using Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and determine that the DEM of cool plasma increases within the flaring loop. We find that the cool and hot plasma components are associated with chromospheric evaporation. The super-hot plasma component could be explained by the thermalization of the non-thermal electrons trapped in the flaring loop.