论文标题
来自空中激光雷达数据的2D和3D建筑物映射的无监督,开源工作流程
An unsupervised, open-source workflow for 2D and 3D building mapping from airborne LiDAR data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Despite the substantial demand for high-quality, large-area building maps, no established open-source workflow for generating 2D and 3D maps currently exists. This study introduces an automated, open-source workflow for large-scale 2D and 3D building mapping utilizing airborne LiDAR data. Uniquely, our workflow operates entirely unsupervised, eliminating the need for any training procedures. We have integrated a specifically tailored DTM generation algorithm into our workflow to prevent errors in complex urban landscapes, especially around highways and overpasses. Through fine rasterization of LiDAR point clouds, we've enhanced building-tree differentiation, reduced errors near water bodies, and augmented computational efficiency by introducing a new planarity calculation. Our workflow offers a practical and scalable solution for the mass production of rasterized 2D and 3D building maps from raw airborne LiDAR data. Also, we elaborate on the influence of parameters and potential error sources to provide users with practical guidance. Our method's robustness has been rigorously optimized and tested using an extensive dataset (> 550 km$^2$), and further validated through comparison with deep learning-based and hand-digitized products. Notably, through these unparalleled, large-scale comparisons, we offer a valuable analysis of large-scale building maps generated via different methodologies, providing insightful evaluations of the effectiveness of each approach. We anticipate that our highly scalable building mapping workflow will facilitate the production of reliable 2D and 3D building maps, fostering advances in large-scale urban analysis. The code will be released upon publication.