论文标题
部分可观测时空混沌系统的无模型预测
Masked Distillation with Receptive Tokens
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Distilling from the feature maps can be fairly effective for dense prediction tasks since both the feature discriminability and localization priors can be well transferred. However, not every pixel contributes equally to the performance, and a good student should learn from what really matters to the teacher. In this paper, we introduce a learnable embedding dubbed receptive token to localize those pixels of interests (PoIs) in the feature map, with a distillation mask generated via pixel-wise attention. Then the distillation will be performed on the mask via pixel-wise reconstruction. In this way, a distillation mask actually indicates a pattern of pixel dependencies within feature maps of teacher. We thus adopt multiple receptive tokens to investigate more sophisticated and informative pixel dependencies to further enhance the distillation. To obtain a group of masks, the receptive tokens are learned via the regular task loss but with teacher fixed, and we also leverage a Dice loss to enrich the diversity of learned masks. Our method dubbed MasKD is simple and practical, and needs no priors of tasks in application. Experiments show that our MasKD can achieve state-of-the-art performance consistently on object detection and semantic segmentation benchmarks. Code is available at: https://github.com/hunto/MasKD .