论文标题

Wave-Front设置的不可约性,深度为零尖端表示

Irreducibility of wave-front sets for depth zero cuspidal representations

论文作者

Aizenbud, Avraham, Gourevitch, Dmitry, Sayag, Eitan

论文摘要

我们表明,[BM97,DEB02B,OKA,LUS85,AA07,TAY16]的结果暗示了在cuspidal表示深度零的情况下,在Wave-Front集合上的Moeglin-Waldspurger问题是一个积极的答案。也就是说,我们推断出,对于足够大的残留特性,Zariski的Zariski闭合了任何深度零不可降低的侧面的波 - 前套,任何还原性群体上任何还原性群体上的任何还原群体都不可局部局部磁场。 在更多详细信息中,我们使用[BM97,DEB02B,OKA]将陈述简化为有限型类型的类似语句,该陈述在[LUS85,AA07,TAY16]中得到了证明。

We show that the results of [BM97, DeB02b, Oka, Lus85, AA07, Tay16] imply a positive answer to the question of Moeglin-Waldspurger on wave-front sets in the case of depth zero cuspidal representations. Namely, we deduce that for large enough residue characteristic, the Zariski closure of the wave-front set of any depth zero irreducible cuspidal representation of any reductive group over a non-Archimedean local field is an irreducible variety. In more details, we use [BM97, DeB02b, Oka] to reduce the statement to an analogous statement for finite groups of Lie type, which is proven in [Lus85, AA07, Tay16].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源