论文标题
稳定的MMWave-Noma系统的视觉辅助用户聚类
Vision-Assisted User Clustering for Robust mmWave-NOMA Systems
论文作者
论文摘要
当在MMWave频段中操作时,用户频道获得高度关联,可以在MMWave-Noma系统中利用,以将一组“相关”用户聚集在一起。识别一组用户聚类会极大地影响NOMA系统的生存能力。通常,仅使用通道状态信息(CSI)来做出这些聚类决策。当访问最新和准确的CSI时出现任何问题时,由于其对CSI的硬依赖性,用户聚类将无法正常运行,显然,这将对Noma Systems的鲁棒性产生负面影响。为了提高NOMA系统的鲁棒性,我们建议利用新兴趋势,例如位置吸引和配备摄像头的基站(CBSS),这些趋势不需要任何额外的射频资源消耗。具体而言,我们探索了CBS可以从解决用户聚类问题的三个不同的反馈方面,即基于CSI的反馈和基于非CSI的反馈,包括用户设备(UE)位置和CBS摄像机供稿。我们首先研究了CBS的视力辅助如何与其他反馈的其他维度结合使用,以在各种情况下做出聚类决策。稍后,我们提供了一个简单的用户案例研究,以说明如何在MMWave-Noma系统中实施视觉辅助的用户聚类以改善鲁棒性,其中深度学习(DL)光束选择算法是在CBS捕获的图像上训练的,以执行Noma Compustering。我们证明,没有CSI的用户聚类可以实现与基于CSI的解决方案相当的性能,并且即使在CSI严重过时或根本不可用的情况下,用户聚类也可以继续运行而无需损失太多性能。
When operated in the mmWave band, user channels get highly correlated which can be exploited in mmWave-NOMA systems to cluster a set of "correlated" users together. Identifying the set of users to cluster greatly affects the viability of NOMA systems. Typically, only channel state information (CSI) is used to make these clustering decisions. When any problem arises in accessing up-to-date and accurate CSI, user clustering will not properly function due to its hard-dependency on CSI, and obviously, this will negatively affect the robustness of the NOMA systems. To improve the robustness of the NOMA systems, we propose to utilize emerging trends such as location-aware and camera-equipped base stations (CBSs) which do not require any extra radio frequency resource consumption. Specifically, we explore three different dimensions of feedback that a CBS can benefit from to solve the user clustering problem, namely CSI-based feedback and non-CSI-based feedback, comprised of user equipment (UE) location and the CBS camera feed. We first investigate how the vision assistance of a CBS can be used in conjunction with other dimensions of feedback to make clustering decisions in various scenarios. Later, we provide a simple user case study to illustrate how to implement vision-assisted user clustering in mmWave-NOMA systems to improve robustness, in which a deep learning (DL) beam selection algorithm is trained on the images captured by the CBS to perform NOMA clustering. We demonstrate that user clustering without CSI can achieve comparable performance to accurate CSI-based solutions, and user clustering can continue to function without much performance loss even in the scenarios where CSI is severely outdated or not available at all.