论文标题

$ \ mathbb {a}^1 $ - 原理理论的日志方案

$\mathbb{A}^1$-homotopy theory of log schemes

论文作者

Park, Doosung

论文摘要

我们构建了$ \ mathbb {a}^1 $ - 局部稳定的动机同型类别FS日志方案。对于具有琐碎日志结构的方案,我们的构建等同于Morel-Voevodsky的原始结构。我们证明了本地化属性。结果,我们获得了Grothendieck六个功能孔形式主义,以实现FS日志方案的严格形式。我们将$ \ mathbb {a}^1 $ - invariant共同体学理论扩展到FS日志方案。特别是,我们定义了动机共同体,同型$ k $ - 理论和FS日志方案的代数COBORDISM。对于任何FS日志方案对方案的平滑日志,我们就方案的共同体学表达了其边界的共同点。

We construct the $\mathbb{A}^1$-local stable motivic homotopy categories of fs log schemes. For schemes with the trivial log structure, our construction is equivalent to the original construction of Morel-Voevodsky. We prove the localization property. As a consequence, we obtain the Grothendieck six functors formalism for strict morphisms of fs log schemes. We extend $\mathbb{A}^1$-invariant cohomology theories of schemes to fs log schemes. In particular, we define motivic cohomology, homotopy $K$-theory, and algebraic cobordism of fs log schemes. For any fs log scheme log smooth over a scheme, we express cohomology of its boundary in terms of cohomology of schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源