论文标题
Transformap:用于内存访问预测的变压器
TransforMAP: Transformer for Memory Access Prediction
论文作者
论文摘要
数据预摘要是一种可以通过在程序需要之前获取记忆延迟来隐藏内存延迟的技术。预取依赖于准确的内存访问预测,越来越多地应用了基于任务的基于任务的基于任务的方法。与以前从三角洲或偏移学习并执行一个访问预测的方法不同,我们基于功能强大的变压器模型开发了Transformap,该模型可以从整个地址空间中学习并执行多个缓存线预测。我们建议将内存地址的二进制用作模型输入,从而避免信息丢失并在硬件中保存一个令牌表。我们设计了一个块索引位图,以在当前页面地址作为学习标签下收集无序的未来页面偏移。结果,我们的模型可以学习页面内的时间模式以及空间模式。在实际的实现中,这种方法有可能隐藏预测潜伏期,因为它预取了多个缓存线,可能会在长时间的地平线上使用。我们表明,我们的方法可实现35.67%的MPKI改善,IPC改善的仿真改善,高于最新的最佳偏好预档案和ISB Prefetcher。
Data Prefetching is a technique that can hide memory latency by fetching data before it is needed by a program. Prefetching relies on accurate memory access prediction, to which task machine learning based methods are increasingly applied. Unlike previous approaches that learn from deltas or offsets and perform one access prediction, we develop TransforMAP, based on the powerful Transformer model, that can learn from the whole address space and perform multiple cache line predictions. We propose to use the binary of memory addresses as model input, which avoids information loss and saves a token table in hardware. We design a block index bitmap to collect unordered future page offsets under the current page address as learning labels. As a result, our model can learn temporal patterns as well as spatial patterns within a page. In a practical implementation, this approach has the potential to hide prediction latency because it prefetches multiple cache lines likely to be used in a long horizon. We show that our approach achieves 35.67% MPKI improvement and 20.55% IPC improvement in simulation, higher than state-of-the-art Best-Offset prefetcher and ISB prefetcher.