论文标题

陷阱离子机械振荡器的相干耦合和非破坏性测量

Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators

论文作者

Hou, Pan-Yu, Wu, Jenny J., Erickson, Stephen D., Cole, Daniel C., Zarantonello, Giorgio, Brandt, Adam D., Geller, Shawn, Kwiatkowski, Alex, Glancy, Scott, Knill, Emanuel, Wilson, Andrew C., Slichter, Daniel H., Leibfried, Dietrich

论文摘要

几个谐波振荡器的精确量子控制和测量,例如腔内电磁场的模式或机械运动的模式,是用作量子平台的关键。被困离子的运动模式可以单独控制并具有良好的连贯性能。然而,实现高保真性两种模式操作和对运动状态的无损测量值是具有挑战性的。在这里,我们证明了捕获式离子晶体的频谱分离的谐波运动模式之间的单个运动量子的相干交换。耦合的时序,强度和相通过具有合适的空间变化的振荡电势来控制。远高于脱碳速率的耦合速率可以证明高保真量子状态转移和梁施加操作,运动模式的纠缠以及Hong-ou-mandel型干扰。此外,我们使用运动耦合来实现对被困的离子运动状态的重复进行的非破坏性投影测量。我们的工作增强了捕获离子运动对连续变量量子计算和误差校正的适用性,并可能提供了改善运动冷却和运动介导的纠缠相互作用的性能的机会。

Precise quantum control and measurement of several harmonic oscillators, such as the modes of the electromagnetic field in a cavity or of mechanical motion, are key for their use as quantum platforms. The motional modes of trapped ions can be individually controlled and have good coherence properties. However, achieving high-fidelity two-mode operations and nondestructive measurements of the motional state has been challenging. Here we demonstrate the coherent exchange of single motional quanta between spectrally separated harmonic motional modes of a trapped-ion crystal. The timing, strength, and phase of the coupling are controlled through an oscillating electric potential with suitable spatial variation. Coupling rates that are much larger than decoherence rates enable demonstrations of high fidelity quantum state transfer and beamsplitter operations, entanglement of motional modes, and Hong-Ou-Mandel-type interference. Additionally, we use the motional coupling to enable repeated non-destructive projective measurement of a trapped-ion motional state. Our work enhances the suitability of trapped-ion motion for continuous-variable quantum computing and error correction and may provide opportunities to improve the performance of motional cooling and motion-mediated entangling interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源