论文标题

在交叉试验中,无偏和有效地估计因果治疗效应

Unbiased and Efficient Estimation of Causal Treatment Effects in Cross-over Trials

论文作者

Madsen, Jeppe Ekstrand Halkjær, Scheike, Thomas, Pipper, Christian

论文摘要

我们将因果推理推理引入交叉试验,重点是彻底的QT(TQT)研究。对于此类试验,我们提出了不同的假设集,并考虑了它们对建模策略和估计程序的影响。我们表明,通过GOMPOUNT方法与加权最小二乘的预测,从工作回归模型的加权最小二乘预测获得了因果治疗效应的无偏估计。对于结果,只需要少数几个关于工作回归和加权矩阵的自然要求。因此,即使它们没有捕获真实的数据生成机制,也会导致一大批高斯线性混合工作模型对因果治疗效应进行公正的估计。我们比较了模拟研究中的一系列工作回归模型,其中从复杂的数据生成机制中模拟了数据,并在实际TQT数据集上估计了输入参数。在这种情况下,我们发现为所有实际目的,调整基线QTC测量值的工作模型具有可比性的性能。具体来说,对于默认情况下的工作模型来说,这是可以观察到的,无法捕获真实的数据生成机制。可以使用简单的工作回归模型有效地分析交叉试验,尤其是TQT研究,而无需偏向感兴趣的因果参数的估计。

We introduce causal inference reasoning to cross-over trials, with a focus on Thorough QT (TQT) studies. For such trials, we propose different sets of assumptions and consider their impact on the modelling strategy and estimation procedure. We show that unbiased estimates of a causal treatment effect are obtained by a G-computation approach in combination with weighted least squares predictions from a working regression model. Only a few natural requirements on the working regression and weighting matrix are needed for the result to hold. It follows that a large class of Gaussian linear mixed working models lead to unbiased estimates of a causal treatment effect, even if they do not capture the true data generating mechanism. We compare a range of working regression models in a simulation study where data are simulated from a complex data generating mechanism with input parameters estimated on a real TQT data set. In this setting, we find that for all practical purposes working models adjusting for baseline QTc measurements have comparable performance. Specifically, this is observed for working models that are by default too simplistic to capture the true data generating mechanism. Cross-over trials and particularly TQT studies can be analysed efficiently using simple working regression models without biasing the estimates for the causal parameters of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源