论文标题
通过对比表示学习,将密度缩放限制结合在密度功能设计中
Incorporation of density scaling constraint in density functional design via contrastive representation learning
论文作者
论文摘要
在数据驱动的范式中,机器学习(ML)是在密度功能理论(DFT)中开发准确和通用交换相关(XC)功能的中心组成部分。众所周知,XC功能必须满足几个确切的条件和物理约束,例如密度缩放,自旋缩放和导数不连续性。在这项工作中,我们证明对比度学习是一种计算高效且灵活的方法,可以将物理约束纳入基于ML的密度功能设计中。我们提出了一种示意图方法,以通过在训练训练期间采用对比度表示学习来结合电子密度的均匀密度缩放特性,以进行交换能量。预处理的隐藏表示形式转移到下游任务,以预测DFT计算的交换能。基于对比度学习从预处理任务中传递的电子密度编码器预测了满足缩放特性的交换能量,而在不使用对比度学习的情况下训练的模型为缩放转换的电子密度系统提供了不良的预测。此外,使用预审慎编码器的模型提供了令人满意的性能,只有标记的整个增强数据集的少量分数,与使用整个数据集从头开始训练的模型相当。结果表明,通过对比度学习纳入确切的约束可以增强使用较少数据标记的神经网络(NN)模型对密度 - 能量映射的理解,这将有助于概括在广泛的场景中应用基于NN的XC功能的应用,这些方案并不总是实验性地,但理论上是合理的。这项工作代表了通用通用密度通过表示学习功能的机器学习设计的可行途径。
In a data-driven paradigm, machine learning (ML) is the central component for developing accurate and universal exchange-correlation (XC) functionals in density functional theory (DFT). It is well known that XC functionals must satisfy several exact conditions and physical constraints, such as density scaling, spin scaling, and derivative discontinuity. In this work, we demonstrate that contrastive learning is a computationally efficient and flexible method to incorporate a physical constraint in ML-based density functional design. We propose a schematic approach to incorporate the uniform density scaling property of electron density for exchange energies by adopting contrastive representation learning during the pretraining task. The pretrained hidden representation is transferred to the downstream task to predict the exchange energies calculated by DFT. The electron density encoder transferred from the pretraining task based on contrastive learning predicts exchange energies that satisfy the scaling property, while the model trained without using contrastive learning gives poor predictions for the scaling-transformed electron density systems. Furthermore, the model with pretrained encoder gives a satisfactory performance with only small fractions of the whole augmented dataset labeled, comparable to the model trained from scratch using the whole dataset. The results demonstrate that incorporating exact constraints through contrastive learning can enhance the understanding of density-energy mapping using neural network (NN) models with less data labeling, which will be beneficial to generalizing the application of NN-based XC functionals in a wide range of scenarios that are not always available experimentally but theoretically justified. This work represents a viable pathway toward the machine learning design of a universal density functional via representation learning.