论文标题
多尺度图像预处理和用于远程CME表征的功能跟踪
Multi-Scale Image Preprocessing and Feature Tracking for Remote CME Characterization
论文作者
论文摘要
冠状质量弹出(CME)通过注射巨大的快速太阳等离子体和能量颗粒(SEP)来影响太阳系在太阳系的巨大距离内的行星际环境。关于如何生产SEP的许多基本问题仍然存在,但是当前对CME驱动的冲击和压缩的理解点。同时,前所未有的遥控器和原位(帕克太阳能探测器,太阳能轨道)太阳能观测值已成为限制现有理论。在这里,我们提出了一种通用方法,用于识别和跟踪CME冲击波和细丝等物体的太阳图像。计算方案基于多尺度数据表示概念概念是一种trous小波变换和一组图像滤波技术。我们在SDO/AIA望远镜观察到的一系列CME相关现象上展示了它的性能。通过在不同的分解和强度水平上层次表示数据,我们的方法允许从成像观测值中提取某些对象及其掩码,以便在时间上跟踪其演变。此处介绍的方法是一般的,适用于在成像观测中检测和跟踪各种太阳和地球现象。它具有准备大型培训数据集以进行深度学习的潜力。我们已经将此方法实施到了免费的Python库中。
Coronal Mass Ejections (CMEs) influence the interplanetary environment over vast distances in the solar system by injecting huge clouds of fast solar plasma and energetic particles (SEPs). A number of fundamental questions remain about how SEPs are produced, but current understanding points to CME-driven shocks and compressions in the solar corona. At the same time, unprecedented remote and in situ (Parker Solar Probe, Solar Orbiter) solar observations are becoming available to constrain existing theories. Here we present a general method for recognition and tracking on solar images of objects such as CME shock waves and filaments. The calculation scheme is based on a multi-scale data representation concept a trous wavelet transform, and a set of image filtering techniques. We showcase its performance on a small set of CME-related phenomena observed with the SDO/AIA telescope. With the data represented hierarchically on different decomposition and intensity levels, our method allows to extract certain objects and their masks from the imaging observations, in order to track their evolution in time. The method presented here is general and applicable to detecting and tracking various solar and heliospheric phenomena in imaging observations. It holds potential to prepare large training data sets for deep learning. We have implemented this method into a freely available Python library.