论文标题

基于主成分分析的基于有效丢失数据归合算法的框架

Principal Component Analysis based frameworks for efficient missing data imputation algorithms

论文作者

Nguyen, Thu, Ly, Hoang Thien, Riegler, Michael Alexander, Halvorsen, Pål, Hammer, Hugo L.

论文摘要

在实践中,缺少数据是一个通常发生的问题。已经开发了许多插补方法来填写缺失的条目。但是,并非所有这些都可以扩展到高维数据,尤其是多个插补技术。同时,如今的数据趋于高维。因此,在这项工作中,我们提出了主要成分分析插补(PCAI),这是一个基于主成分分析(PCA)的简单但通用的框架,以加快归档过程并减轻许多可用的插补技术的记忆问题,而无需牺牲MSE期限的插定质量。此外,即使某些或全部缺少的功能是分类的,或者缺少功能的数量很大,也可以使用框架。接下来,我们介绍PCA插补 - 分类(PIC),这是PCAI在分类问题中的应用,并进行了一些调整。我们通过对各种情况进行实验来验证我们的方法,这表明PCAI和PIC可以使用各种插入算法,包括最先进的算法并显着提高插奖速度,同时与直接插定相比(即直接在缺少数据上插入)竞争性均方根误差/分类精度)。

Missing data is a commonly occurring problem in practice. Many imputation methods have been developed to fill in the missing entries. However, not all of them can scale to high-dimensional data, especially the multiple imputation techniques. Meanwhile, the data nowadays tends toward high-dimensional. Therefore, in this work, we propose Principal Component Analysis Imputation (PCAI), a simple but versatile framework based on Principal Component Analysis (PCA) to speed up the imputation process and alleviate memory issues of many available imputation techniques, without sacrificing the imputation quality in term of MSE. In addition, the frameworks can be used even when some or all of the missing features are categorical, or when the number of missing features is large. Next, we introduce PCA Imputation - Classification (PIC), an application of PCAI for classification problems with some adjustments. We validate our approach by experiments on various scenarios, which shows that PCAI and PIC can work with various imputation algorithms, including the state-of-the-art ones and improve the imputation speed significantly, while achieving competitive mean square error/classification accuracy compared to direct imputation (i.e., impute directly on the missing data).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源