论文标题
3D点云对象的几个射击课程学习
Few-shot Class-incremental Learning for 3D Point Cloud Objects
论文作者
论文摘要
几乎没有射门的课堂学习(FSCIL)旨在使用一些示例逐步微调模型(在基础类中培训),而又不会忘记先前的培训。最近的努力主要在2D图像上解决此问题。但是,由于相机技术的发展,3D点云数据比以往任何时候都更可用,这需要考虑3D数据的FSCIL。本文介绍了3D域中的FSCIL。除了灾难性忘记过去的知识和过度贴合数据的众所周知的问题外,3D FSCIL还会带来更新的挑战。例如,基类可能在现实情况下包含许多合成实例。相比之下,新型类别只有几个实际扫描的样本(来自RGBD传感器)以增量步骤获得。由于数据从合成到真实的变化,FSCIL会承受其他挑战,以后的增量步骤降低了性能。我们尝试使用微莎普(正交基矢量)来解决此问题,并使用预定义的规则组描述任何3D对象。它支持逐步训练,几乎没有示例将合成与真实数据变化最小化。我们使用流行的合成数据集(ModelNet和Shapenet)和3D实扫描的数据集(ScanObjectNN和CO3D)为3D FSCIL提出了新的测试协议。通过比较最先进的方法,我们确定了3D域中方法的有效性。
Few-shot class-incremental learning (FSCIL) aims to incrementally fine-tune a model (trained on base classes) for a novel set of classes using a few examples without forgetting the previous training. Recent efforts address this problem primarily on 2D images. However, due to the advancement of camera technology, 3D point cloud data has become more available than ever, which warrants considering FSCIL on 3D data. This paper addresses FSCIL in the 3D domain. In addition to well-known issues of catastrophic forgetting of past knowledge and overfitting of few-shot data, 3D FSCIL can bring newer challenges. For example, base classes may contain many synthetic instances in a realistic scenario. In contrast, only a few real-scanned samples (from RGBD sensors) of novel classes are available in incremental steps. Due to the data variation from synthetic to real, FSCIL endures additional challenges, degrading performance in later incremental steps. We attempt to solve this problem using Microshapes (orthogonal basis vectors) by describing any 3D objects using a pre-defined set of rules. It supports incremental training with few-shot examples minimizing synthetic to real data variation. We propose new test protocols for 3D FSCIL using popular synthetic datasets (ModelNet and ShapeNet) and 3D real-scanned datasets (ScanObjectNN and CO3D). By comparing state-of-the-art methods, we establish the effectiveness of our approach in the 3D domain.