论文标题
所有耦合的互动CFT:大$ n $的热和纠缠熵
Interacting CFTs for all couplings: Thermal versus Entanglement Entropy at Large $N$
论文作者
论文摘要
在本文中,我计算了具有非物质势势的边际$ o(n)$型号的大$ n $限制。这导致了$ d = 3+4n $中的任何$ n \ in \ mathbb {z} _+$中的新的相互作用的纯共形场理论(CFTS)。同样,$ d = 3+4n $ i计算$ r^{2+4n} \ times s^1 $的所有耦合的热熵,$ n = 0,1,2,3 $。在2+1个维度中,我发现热熵的强效耦合比为4/5,匹配最近的结果,并将此分析进一步扩展到更高的奇数尺寸。接下来,我计算了$ s^{d-2} $ on $ s^{d-2} $上的真空纠缠熵$ s^d _ {\ text {ee}} $,用于大n限制中的任意奇数$ d $中的所有耦合。我发现$ s^{d-2} $上的真空纠缠熵不仅可以解决,而且对于所有耦合$λ$也是恒定的。因此,在大$ n $限制中,$ s^{d-2} $的真空纠缠熵对于奇数$ d $对于所有$λ$来说都是恒定的,与热熵相反,与热熵相比,该熵也证明在单调上也与$λ$在$ d = 3+4n $中单调减少。
In this paper, I calculate the large $N$ limit of marginal $O(N)$ models with non-polynomial potentials in arbitrary odd dimensions $d$. This results in a new class of interacting pure conformal field theories (CFTs) in $d=3+4n$ for any $n \in \mathbb{Z}_+$. Similarly, in $d=3+4n$ I calculate the thermal entropy for all couplings on $R^{2+4n} \times S^1$ for $n=0,1,2,3$. In 2+1 dimensions I find the strong-to-weak coupling ratio of the thermal entropy to be 4/5, matching recent results, and further extend this analysis to higher odd dimensions. Next, I calculated the vacuum entanglement entropy $s^d_{\text{EE}}$ on $S^{d-2}$ for all couplings in arbitrary odd $d$ in the large N limit. I find the vacuum entanglement entropy on $S^{d-2}$ to be not only solvable but also constant for all couplings $λ$. Thus, in the large $N$ limit, the vacuum entanglement entropy on $S^{d-2}$ for odd $d$ is constant for all $λ$, in contrast to the thermal entropy which is shown to also be monotonically decreasing with $λ$ in $d=3+4n$.