论文标题

Android恶意软件检测中的数据集偏差

Dataset Bias in Android Malware Detection

论文作者

Lin, Yan, Liu, Tianming, Liu, Wei, Wang, Zhigaoyuan, Li, Li, Xu, Guoai, Wang, Haoyu

论文摘要

研究人员提出了各种恶意软件检测方法来解决爆炸性的移动安全威胁。我们认为,由于恶意软件数据集的可变性引入的研究偏差,实验结果被夸大了。我们在三个方面探索了偏见在Android恶意软件检测中的影响,该方法用于标记地面真相,数据集中的恶意软件家族的分布以及使用数据集的方法。我们实施了一组不同的VT阈值实验,发现用于标记恶意软件数据的方法直接影响了恶意软件检测性能。我们进一步比较了恶意软件家庭类型和组成对恶意软件检测的影响。在恶意软件家族的各种组合下,每种方法的优越性都是不同的。通过我们的广泛实验,我们表明使用数据集的方法可能会对评估产生误导性的影响,并且性能差异可能高达40%以上。我们认为,应仔细控制/消除本文观察到的这些研究偏见,以对恶意软件检测技术进行公平的比较。提供合理且可解释的结果比仅通过模糊的数据集和实验设置报告高检测精度要好。

Researchers have proposed kinds of malware detection methods to solve the explosive mobile security threats. We argue that the experiment results are inflated due to the research bias introduced by the variability of malware dataset. We explore the impact of bias in Android malware detection in three aspects, the method used to flag the ground truth, the distribution of malware families in the dataset, and the methods to use the dataset. We implement a set of experiments of different VT thresholds and find that the methods used to flag the malware data affect the malware detection performance directly. We further compare the impact of malware family types and composition on malware detection in detail. The superiority of each approach is different under various combinations of malware families. Through our extensive experiments, we showed that the methods to use the dataset can have a misleading impact on evaluation, and the performance difference can be up to over 40%. We argue that these research biases observed in this paper should be carefully controlled/eliminated to enforce a fair comparison of malware detection techniques. Providing reasonable and explainable results is better than only reporting a high detection accuracy with vague dataset and experimental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源