论文标题
安全联合聚类
Secure Federated Clustering
论文作者
论文摘要
我们考虑了由中央服务器和许多分布式客户端组成的联合学习(FL)设置中的$ k $ -MEANS数据聚类的基础学习任务。我们开发了SECFC,这是一种同时实现的安全联合聚类算法1)普遍的性能:与集中式数据相比,无论客户群的数据分布如何; 2)数据隐私:每个客户的私人数据和群集中心未泄漏到其他客户端和服务器。在SECFC中,客户对其本地数据进行编码,并以信息理论上的私有方式共享编码数据;然后利用编码的代数结构,FL网络准确地执行了劳埃德的$ k $ -MEANS启发式启发式,以获得最终的聚类。合成和真实数据集的实验结果证明了SECFC对跨客户的不同数据分布的普遍效果,及其对于系统参数的各种组合的计算实用性。最后,我们提出了SECFC的扩展,以进一步为所有数据点提供会员隐私。
We consider a foundational unsupervised learning task of $k$-means data clustering, in a federated learning (FL) setting consisting of a central server and many distributed clients. We develop SecFC, which is a secure federated clustering algorithm that simultaneously achieves 1) universal performance: no performance loss compared with clustering over centralized data, regardless of data distribution across clients; 2) data privacy: each client's private data and the cluster centers are not leaked to other clients and the server. In SecFC, the clients perform Lagrange encoding on their local data and share the coded data in an information-theoretically private manner; then leveraging the algebraic structure of the coding, the FL network exactly executes the Lloyd's $k$-means heuristic over the coded data to obtain the final clustering. Experiment results on synthetic and real datasets demonstrate the universally superior performance of SecFC for different data distributions across clients, and its computational practicality for various combinations of system parameters. Finally, we propose an extension of SecFC to further provide membership privacy for all data points.