论文标题

基于机器学习的个体健康疾病预防疾病预防阶段

Individual health-disease phase diagrams for disease prevention based on machine learning

论文作者

Nakamura, Kazuki, Uchino, Eiichiro, Sato, Noriaki, Araki, Ayano, Terayama, Kei, Kojima, Ryosuke, Murashita, Koichi, Itoh, Ken, Mikami, Tatsuya, Tamada, Yoshinori, Okuno, Yasushi

论文摘要

基于有效干预措施的早期疾病检测和预防方法正在引起人们的注意。机器学习技术通过捕获多元数据中的个体差异来实现精确的疾病预测。精确医学的进展表明,在个人层面的健康数据中存在实质性的异质性,并且复杂的健康因素与慢性疾病的发展有关。但是,由于多种生物标志物之间的复杂关系,确定跨疾病发作过程中个体生理状态变化仍然是一个挑战。在这里,我们介绍了健康疾病阶段图(HDPD),它通过可视化在疾病进展过程早期波动的多种生物标志物的边界值来代表个人健康状态。在HDPD中,未来的发作预测是通过扰动多个生物标志物值的同时考虑变量之间的依赖性来表示的。我们从3,238个个体的纵向健康检查队列中构建了11种非通信疾病(NCD)的HDPD,其中包括3,215个测量项目和遗传数据。 HDPD中非发病区域的生物标志物值的改善显着阻止了11个NCD中的7个未来疾病发作。我们的结果表明,HDPD可以在发作过程中代表各个生理状态,并用作预防疾病的干预目标。

Early disease detection and prevention methods based on effective interventions are gaining attention. Machine learning technology has enabled precise disease prediction by capturing individual differences in multivariate data. Progress in precision medicine has revealed that substantial heterogeneity exists in health data at the individual level and that complex health factors are involved in the development of chronic diseases. However, it remains a challenge to identify individual physiological state changes in cross-disease onset processes because of the complex relationships among multiple biomarkers. Here, we present the health-disease phase diagram (HDPD), which represents a personal health state by visualizing the boundary values of multiple biomarkers that fluctuate early in the disease progression process. In HDPDs, future onset predictions are represented by perturbing multiple biomarker values while accounting for dependencies among variables. We constructed HDPDs for 11 non-communicable diseases (NCDs) from a longitudinal health checkup cohort of 3,238 individuals, comprising 3,215 measurement items and genetic data. Improvement of biomarker values to the non-onset region in HDPD significantly prevented future disease onset in 7 out of 11 NCDs. Our results demonstrate that HDPDs can represent individual physiological states in the onset process and be used as intervention goals for disease prevention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源