论文标题
连接:基于神经网络的框架,用于模拟宇宙学观察力和宇宙参数推理
CONNECT: A neural network based framework for emulating cosmological observables and cosmological parameter inference
论文作者
论文摘要
贝叶斯参数推断是现代宇宙学的重要工具,通常需要计算给定数据集组合的模型参数的每种推断的$ 10^5 $ - $ 10^6 $的理论模型。通过求解线性化的爱因斯坦 - 波尔兹曼系统来计算这些模型通常每模型需要数十个CPU核心秒,这使整个过程在计算上非常昂贵。 在本文中,我们介绍\ textsc {connect},一个神经网络框架模拟\ textsc {class}计算作为流行的采样器\ textsc {montepython}的易于使用的插件。 \ textsc {connect}使用迭代训练的神经网络,该网络模拟通常由\ textsc {class}计算的观察力。培训数据是使用\ textsc {class}生成的,但是使用新颖的算法来生成参数空间中的有利点进行训练数据,与传统推力运行相比,可以通过两个幅度级降低\ textsc {class} - evaluations的数量。一旦对给定模型进行了\ textsc {connect}的培训,不同的数据集组合不需要额外的训练,从而使\ textsc {connect}比\ textsc {classSc {class}更快的数量级(clastsc {class})(并使推断过程完全由可能性计算的速度支配)。 对于本文研究的模型,我们发现使用\ textsc {connect}运行的宇宙学参数推断会产生与使用\ textsc {class}得出的后代不同的后代,通常小于$ 0.01 $ - $ 0.1 $ - $ 0.1 $标准偏差。我们还强调,可以并行生产培训数据,从而有效利用所有可用的计算资源。 \ textsc {connect}代码可在\ url {https://github.com/aarhuscosmology}中公开下载。
Bayesian parameter inference is an essential tool in modern cosmology, and typically requires the calculation of $10^5$--$10^6$ theoretical models for each inference of model parameters for a given dataset combination. Computing these models by solving the linearised Einstein-Boltzmann system usually takes tens of CPU core-seconds per model, making the entire process very computationally expensive. In this paper we present \textsc{connect}, a neural network framework emulating \textsc{class} computations as an easy-to-use plug-in for the popular sampler \textsc{MontePython}. \textsc{connect} uses an iteratively trained neural network which emulates the observables usually computed by \textsc{class}. The training data is generated using \textsc{class}, but using a novel algorithm for generating favourable points in parameter space for training data, the required number of \textsc{class}-evaluations can be reduced by two orders of magnitude compared to a traditional inference run. Once \textsc{connect} has been trained for a given model, no additional training is required for different dataset combinations, making \textsc{connect} many orders of magnitude faster than \textsc{class} (and making the inference process entirely dominated by the speed of the likelihood calculation). For the models investigated in this paper we find that cosmological parameter inference run with \textsc{connect} produces posteriors which differ from the posteriors derived using \textsc{class} by typically less than $0.01$--$0.1$ standard deviations for all parameters. We also stress that the training data can be produced in parallel, making efficient use of all available compute resources. The \textsc{connect} code is publicly available for download at \url{https://github.com/AarhusCosmology}.