论文标题

2022数据驱动的等离子体科学综述

2022 Review of Data-Driven Plasma Science

论文作者

Anirudh, Rushil, Archibald, Rick, Asif, M. Salman, Becker, Markus M., Benkadda, Sadruddin, Bremer, Peer-Timo, Budé, Rick H. S., Chang, C. S., Chen, Lei, Churchill, R. M., Citrin, Jonathan, Gaffney, Jim A, Gainaru, Ana, Gekelman, Walter, Gibbs, Tom, Hamaguchi, Satoshi, Hill, Christian, Humbird, Kelli, Jalas, Sören, Kawaguchi, Satoru, Kim, Gon-Ho, Kirchen, Manuel, Klasky, Scott, Kline, John L., Krushelnick, Karl, Kustowski, Bogdan, Lapenta, Giovanni, Li, Wenting, Ma, Tammy, Mason, Nigel J., Mesbah, Ali, Michoski, Craig, Munson, Todd, Murakami, Izumi, Najm, Habib N., Olofsson, K. Erik J., Park, Seolhye, Peterson, J. Luc, Probst, Michael, Pugmire, Dave, Sammuli, Brian, Sawlani, Kapil, Scheinker, Alexander, Schissel, David P., Shalloo, Rob J., Shinagawa, Jun, Seong, Jaegu, Spears, Brian K., Tennyson, Jonathan, Thiagarajan, Jayaraman, Ticoş, Catalin M., Trieschmann, Jan, van Dijk, Jan, Van Essen, Brian, Ventzek, Peter, Wang, Haimin, Wang, Jason T. L., Wang, Zhehui, Wende, Kristian, Xu, Xueqiao, Yamada, Hiroshi, Yokoyama, Tatsuya, Zhang, Xinhua

论文摘要

数据科学和技术为科学提供了变革性的工具和方法。这篇评论文章重点介绍了数据驱动等离子体科学(DDPS)的跨学科领域的最新发展和进步。大量的数据和机器学习算法齐头并进。当今机器生成或收集了大多数血浆数据,无论是实验性,观察性还是计算。现在,人类手动分析所有数据变得不切实际。因此,必须训练机器分析和解释(最终)像人类一样智能的数据,但数量上的效率要高得多。尽管数据科学在等离子体科学和技术中的应用中取得了令人印象深刻的进展,但DDP的新兴领域仍处于起步阶段。在一些最具挑战性的问题上,例如融合能源,材料的血浆处理以及通过可观察到的等离子体现象对宇宙的基本了解,预计DDPS将继续从等离子体科学与数据科学之间的血浆科学与数据科学之间的跨学科婚姻中获得显着受益。

Data science and technology offer transformative tools and methods to science. This review article highlights latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS). A large amount of data and machine learning algorithms go hand in hand. Most plasma data, whether experimental, observational or computational, are generated or collected by machines today. It is now becoming impractical for humans to analyze all the data manually. Therefore, it is imperative to train machines to analyze and interpret (eventually) such data as intelligently as humans but far more efficiently in quantity. Despite the recent impressive progress in applications of data science to plasma science and technology, the emerging field of DDPS is still in its infancy. Fueled by some of the most challenging problems such as fusion energy, plasma processing of materials, and fundamental understanding of the universe through observable plasma phenomena, it is expected that DDPS continues to benefit significantly from the interdisciplinary marriage between plasma science and data science into the foreseeable future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源