论文标题
桥接有效的现场理论和广义流体力学
Bridging Effective Field Theories and Generalized Hydrodynamics
论文作者
论文摘要
广义流体动力学(GHD)最近被设计为一种方法,用于解决均值场外近似值以外的可集成量子多体系统的动力学。以其原始形式,一个主要的限制是无法预测相等的相关性。在这里,我们提出了一种新的方法,可以治疗GHD框架内一维螺旋变性气体的热波动。我们展示了如何通过采样集体波体激发来获得使用热量伯特·安萨兹的标准结果,从而揭示了GHD与有效的现场理论(例如标准的流体动力学方程)之间的联系或二元性。例如,我们研究了连贯激发的密度波的阻尼,并显示如何从GHD演化中提取相等的相关函数。我们的结果从概念上讲是一种新的方法来处理GHD线性化制度之外的波动。
Generalized Hydrodynamics (GHD) has recently been devised as a method to solve the dynamics of integrable quantum many-body systems beyond the mean-field approximation. In its original form, a major limitation is the inability to predict equal-time correlations. Here we present a new method to treat thermal fluctuations of a 1D bosonic degenerate gas within the GHD framework. We show how the standard results using the thermodynmaic Bethe ansatz can be obtained through sampling of collective bosonic excitations, revealing the connection or duality between GHD and effective field theories such as the standard hydrodynamic equations. As an example, we study the damping of a coherently excited density wave and show how equal-time phase correlation functions can be extracted from the GHD evolution. Our results present a conceptually new way of treating fluctuations beyond the linearized regime of GHD.