论文标题
单层中磁性的微观起源
Microscopic origin of magnetism in monolayer $3d$ transition metal dihalides
论文作者
论文摘要
在最近在二维沮丧的晶格中出现的奇异磁性阶段的动机,我们研究了三角形晶格材料的单层家族$ MX_2 $($ m $ = {v,mn,ni,ni},$ x $ x $ = = {cl,br,i})。我们首先表明,考虑一般特性(例如填充和杂交)使得能够为最相关的磁相互作用参数制定趋势。特别是,我们观察到,可以有效地通过配体元素调节自旋轨道耦合(SOC)的效果,因为所考虑的3 $ d $ transition金属离子不会对现场交换相互作用的各向异性组件有很大贡献。因此,我们发现相应的SOC矩阵元素与原子极限显着不同。在下一步并使用基于第一原理的两种互补方法,我们提取现实的有效旋转模型,并发现在重型配体元素的情况下,SOC效应仅在特定填充物中出现在各向异性交换和单离子各向异性中。
Motivated by the recent wealth of exotic magnetic phases emerging in two-dimensional frustrated lattices, we investigate the origin of possible magnetism in the monolayer family of triangular lattice materials $MX_2$ ($M$={V, Mn, Ni}, $X$={Cl, Br, I}). We first show that consideration of general properties such as filling and hybridization enables to formulate trends for the most relevant magnetic interaction parameters. In particular, we observe that the effects of spin-orbit coupling (SOC) can be effectively tuned through the ligand elements as the considered 3$d$ transition metal ions do not strongly contribute to the anisotropic component of the inter-site exchange interaction. Consequently, we find that the corresponding SOC matrix-elements differ significantly from the atomic limit. In a next step and by using two complementary approaches based on first principles, we extract realistic effective spin models and find that in the case of heavy ligand elements, SOC effects manifest in anisotropic exchange and single-ion anisotropy only for specific fillings.