论文标题
实验单设定量子层造影
Experimental single-setting quantum state tomography
论文作者
论文摘要
量子计算机使用稳定增长的系统大小来解决越来越复杂的任务。表征这些量子系统至关重要,但变得越来越具有挑战性。金标准是量子状态层析成像(QST),能够在没有事先知识的情况下完全重建量子状态。但是,测量和经典计算成本在系统尺寸中呈指数增长 - 鉴于现有和近期量子设备的规模,瓶颈。在这里,我们展示了使用单个测量设置的可扩展且实用的QST方法,即对称信息完整(SIC)正运算符值衡量标准(POVM)。我们通过在没有任何一个Qubilla Qubit的离子中利用更多能量水平来在离子陷阱设备上实施这些非正交测量。更确切地说,我们在本地绘制SIC POVM到嵌入在较高维度系统中的正交状态,我们使用重复的序列检测来读取,并在每张镜头中提供完整的层析成像信息。将这种SIC断层扫描与最近开发的随机测量工具箱(“古典阴影”)相结合,这是一种强大的组合。 SIC断层扫描减轻了以随机选择测量设置的需求(“降低式”),而经典的阴影可以比标准方法更快地估算幅度密度矩阵矩阵的任意多项式函数。后者实现了深入的纠缠研究,我们在5个Qubit上实验表明,绝对最大纠缠(AME)状态。此外,每次镜头中都可以在每次镜头中获得完整的层析成像信息,这一事实可以实时在线QST。我们在8量的纠缠状态以及快速状态识别上证明了这一点。总而言之,这些功能将基于SIC的经典影子估计作为量子状态表征的高度可扩展且方便的工具。
Quantum computers solve ever more complex tasks using steadily growing system sizes. Characterizing these quantum systems is vital, yet becoming increasingly challenging. The gold-standard is quantum state tomography (QST), capable of fully reconstructing a quantum state without prior knowledge. Measurement and classical computing costs, however, increase exponentially in the system size - a bottleneck given the scale of existing and near-term quantum devices. Here, we demonstrate a scalable and practical QST approach that uses a single measurement setting, namely symmetric informationally complete (SIC) positive operator-valued measures (POVM). We implement these nonorthogonal measurements on an ion trap device by utilizing more energy levels in each ion - without ancilla qubits. More precisely, we locally map the SIC POVM to orthogonal states embedded in a higher-dimensional system, which we read out using repeated in-sequence detections, providing full tomographic information in every shot. Combining this SIC tomography with the recently developed randomized measurement toolbox ("classical shadows") proves to be a powerful combination. SIC tomography alleviates the need for choosing measurement settings at random ("derandomization"), while classical shadows enable the estimation of arbitrary polynomial functions of the density matrix orders of magnitudes faster than standard methods. The latter enables in-depth entanglement studies, which we experimentally showcase on a 5-qubit absolutely maximally entangled (AME) state. Moreover, the fact that the full tomography information is available in every shot enables online QST in real time. We demonstrate this on an 8-qubit entangled state, as well as for fast state identification. All in all, these features single out SIC-based classical shadow estimation as a highly scalable and convenient tool for quantum state characterization.