论文标题
异步分层联盟学习
Asynchronous Hierarchical Federated Learning
论文作者
论文摘要
联邦学习是一个快速增长的研究领域,具有各种好处和行业应用。典型的联合模式存在一些内在的问题,例如繁重的服务器流量,长时间的收敛性和不可靠的准确性。在本文中,我们通过提出异步分层联合学习来解决这些问题,其中中央服务器使用网络拓扑或某些聚类算法来为工人分配集群(即客户端设备)。在每个集群中,选择了一个特殊的聚合器设备来启用层次学习,从而导致服务器和工人之间有效的通信,从而可以大大减轻服务器的负担。此外,异步联合学习模式用于耐受系统的异质性并实现快速收敛性,即服务器汇总了从工人加权的梯度参数来更新全球模型的工人的梯度,并在工人中进行正则化的随机梯度下降,从而使工作人员无法实现AsynChronChronic的不稳定性。我们评估了有关CIFAR-10图像分类任务的提出算法,实验结果证明了异步分层联合学习的有效性。
Federated Learning is a rapidly growing area of research and with various benefits and industry applications. Typical federated patterns have some intrinsic issues such as heavy server traffic, long periods of convergence, and unreliable accuracy. In this paper, we address these issues by proposing asynchronous hierarchical federated learning, in which the central server uses either the network topology or some clustering algorithm to assign clusters for workers (i.e., client devices). In each cluster, a special aggregator device is selected to enable hierarchical learning, leads to efficient communication between server and workers, so that the burden of the server can be significantly reduced. In addition, asynchronous federated learning schema is used to tolerate heterogeneity of the system and achieve fast convergence, i.e., the server aggregates the gradients from the workers weighted by a staleness parameter to update the global model, and regularized stochastic gradient descent is performed in workers, so that the instability of asynchronous learning can be alleviated. We evaluate the proposed algorithm on CIFAR-10 image classification task, the experimental results demonstrate the effectiveness of asynchronous hierarchical federated learning.