论文标题

比较深度学习的肾结石识别功能融合策略

Comparing feature fusion strategies for Deep Learning-based kidney stone identification

论文作者

Villalvazo-Avila, Elias, Lopez-Tiro, Francisco, Flores-Araiza, Daniel, Ochoa-Ruiz, Gilberto, El-Beze, Jonathan, Hubert, Jacques, Daul, Christian

论文摘要

此贡献提出了一种深入学习方法,用于从不同角度提取和融合图像信息,目的是产生更具判别的对象特征。我们的方法专门设计用于模仿泌尿科医生使用的形态宪法分析,用于通过检查其碎片的部分和表面来视觉对肾结石进行分类。深度特征融合策略将单视图提取主链模型的结果提高了10 \%,就肾结石分类的精度而言。

This contribution presents a deep-learning method for extracting and fusing image information acquired from different viewpoints with the aim to produce more discriminant object features. Our approach was specifically designed to mimic the morpho-constitutional analysis used by urologists to visually classify kidney stones by inspecting the sections and surfaces of their fragments. Deep feature fusion strategies improved the results of single view extraction backbone models by more than 10\% in terms of precision of the kidney stones classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源