论文标题

圆环链接同源性的对称函数升力

A symmetric function lift of torus link homology

论文作者

Wilson, Andy

论文摘要

假设$ m $和$ n $是正整数,让$ k = \ gcd(m,n)$,$ m = m/k $,$ n = n = n/k $。我们将对称函数$ l_ {m,n} $定义为某些晶格路径的加权总和。我们表明,$ l_ {m,n} $满足了Mellit和Hogancamp的递归的概括,该递归是$ M,n $ -torus链接的三个阶层的Khovanov-Rozansky同源性。作为推论,我们获得了$ M,n $ -torus链接的三个阶级的Khovanov-Rozansky同源性,作为$ l_ {m,n} $的专业化。我们猜想$ l_ {m,n} $是等于(最高常数),椭圆形霍尔代数运算符$ \ mathbf {q} _ {m,n} $构成$ k $ times,并应用于1。

Suppose $M$ and $N$ are positive integers and let $k = \gcd(M, N)$, $m = M/k$, and $n=N/k$. We define a symmetric function $L_{M,N}$ as a weighted sum over certain tuples of lattice paths. We show that $L_{M,N}$ satisfies a generalization of Mellit and Hogancamp's recursion for the triply-graded Khovanov--Rozansky homology of the $M,N$-torus link. As a corollary, we obtain the triply-graded Khovanov--Rozansky homology of the $M,N$-torus link as a specialization of $L_{M,N}$. We conjecture that $L_{M,N}$ is equal (up to a constant) to the elliptic Hall algebra operator $\mathbf{Q}_{m,n}$ composed $k$ times and applied to 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源