论文标题
平行回火,带有各种参考
Parallel Tempering With a Variational Reference
论文作者
论文摘要
从复杂的目标分布中抽样是贝叶斯推论基础的具有挑战性的任务。并行回火(PT)通过在后验分布和固定参考分布之间插值的一系列分布序列上构造马尔可夫链来解决此问题,该分布序列通常被选为先验。但是,在典型的情况下,先前和后验几乎是互惠的,PT方法在计算上是过度的。在这项工作中,我们通过构建连接到自适应调谐的变异参考的广义退火路径来应对这一挑战。调整参考分布以最大程度地减少前向(包含)KL差异对后验分布,使用简单的无梯度矩匹配过程。我们表明,我们的自适应过程会收敛到正向KL最小化器,并且正向KL Divergence可以很好地代表以前开发的PT性能度量。我们还表明,在典型的贝叶斯模型的大数据限制中,提出的方法改善了性能,而传统的PT则任意恶化。最后,我们介绍了PT,其中有两个参考文献 - 一个固定的,一个变异性 - 具有新颖的拆分退火路径,可确保稳定的变分参考适应性。本文以实验结论,这些实验证明了我们方法在各种逼真的贝叶斯推理情景中所获得的巨大经验收益。
Sampling from complex target distributions is a challenging task fundamental to Bayesian inference. Parallel tempering (PT) addresses this problem by constructing a Markov chain on the expanded state space of a sequence of distributions interpolating between the posterior distribution and a fixed reference distribution, which is typically chosen to be the prior. However, in the typical case where the prior and posterior are nearly mutually singular, PT methods are computationally prohibitive. In this work we address this challenge by constructing a generalized annealing path connecting the posterior to an adaptively tuned variational reference. The reference distribution is tuned to minimize the forward (inclusive) KL divergence to the posterior distribution using a simple, gradient-free moment-matching procedure. We show that our adaptive procedure converges to the forward KL minimizer, and that the forward KL divergence serves as a good proxy to a previously developed measure of PT performance. We also show that in the large-data limit in typical Bayesian models, the proposed method improves in performance, while traditional PT deteriorates arbitrarily. Finally, we introduce PT with two references -- one fixed, one variational -- with a novel split annealing path that ensures stable variational reference adaptation. The paper concludes with experiments that demonstrate the large empirical gains achieved by our method in a wide range of realistic Bayesian inference scenarios.