论文标题
通过DeNoing进行分子性质预测的预训练
Pre-training via Denoising for Molecular Property Prediction
论文作者
论文摘要
来自3D结构的分子财产预测的许多重要问题的数据有限,对神经网络提出了概括挑战。在本文中,我们描述了一种基于DeNosing的预训练技术,该技术通过利用平衡处的3D分子结构的大型数据集来实现分子性质预测的新最新,以学习下游任务的有意义的表示。依赖于脱氧自动编码器和得分匹配之间的众所周知的联系,我们表明,脱氧物体的目标与学习分子力场相对应,这是由于与高斯人的混合物近似于boltzmann的分布而产生的,直接来自平衡结构。我们的实验表明,使用此预训练目标可以显着提高多个基准的性能,从而在广泛使用的QM9数据集中实现了大多数目标的新最新目标。然后,我们的分析提供了对不同因素的影响(数据集大小,模型大小和体系结构以及上游和下游数据集的选择)的实用见解。
Many important problems involving molecular property prediction from 3D structures have limited data, posing a generalization challenge for neural networks. In this paper, we describe a pre-training technique based on denoising that achieves a new state-of-the-art in molecular property prediction by utilizing large datasets of 3D molecular structures at equilibrium to learn meaningful representations for downstream tasks. Relying on the well-known link between denoising autoencoders and score-matching, we show that the denoising objective corresponds to learning a molecular force field -- arising from approximating the Boltzmann distribution with a mixture of Gaussians -- directly from equilibrium structures. Our experiments demonstrate that using this pre-training objective significantly improves performance on multiple benchmarks, achieving a new state-of-the-art on the majority of targets in the widely used QM9 dataset. Our analysis then provides practical insights into the effects of different factors -- dataset sizes, model size and architecture, and the choice of upstream and downstream datasets -- on pre-training.