论文标题
关于数据驱动的机会限制在瓦斯施泰因球上的限制
On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study three popular approximation schemes for distributionally robust chance constrained programs over Wasserstein balls, where the ambiguity set contains all probability distributions within a certain Wasserstein distance to a reference distribution. The first approximation replaces the chance constraint with a bound on the conditional value-at-risk, the second approximation decouples different safety conditions via Bonferroni's inequality, and the third approximation restricts the expected violation of the safety condition(s) so that the chance constraint is satisfied. We show that the conditional value-at-risk approximation can be characterized as a tight convex approximation, which complements earlier findings on classical (non-robust) chance constraints, and we offer a novel interpretation in terms of transportation savings. We also show that the three approximations can perform arbitrarily poorly in data-driven settings, and that they are generally incomparable with each other.