论文标题

$ \ mathrm {cmo} $ - 上半空间中椭圆系统的dirichlet问题

The $\mathrm{CMO}$-Dirichlet problem for elliptic systems in the upper half-space

论文作者

Cao, Mingming

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We prove that for any second-order, homogeneous, $N \times N$ elliptic system $L$ with constant complex coefficients in $\mathbb{R}^n$, the Dirichlet problem in $\mathbb{R}^n_+$ with boundary data in $\mathrm{CMO}(\mathbb{R}^{n-1}, \mathbb{C}^N)$ is well-posed under the assumption that $dμ(x', t) := |\nabla u(x)|^2\, t \, dx' dt$ is a strong vanishing Carleson measure in $\mathbb{R}^n_+$ in some sense. This solves an open question posed by Martell et al. The proof relies on a quantitative Fatou-type theorem, which not only guarantees the existence of the pointwise nontangential boundary trace for smooth null-solutions satisfying a strong vanishing Carleson measure condition, but also includes a Poisson integral representation formula of solutions along with a characterization of $\mathrm{CMO}(\mathbb{R}^{n-1}, \mathbb{C}^N)$ in terms of the traces of solutions of elliptic systems. Moreover, we are able to establish the well-posedness of the Dirichlet problem in $\mathbb{R}^n_+$ for a system $L$ as above in the case when the boundary data belongs to $\mathrm{XMO}(\mathbb{R}^{n-1}, \mathbb{C}^N)$, which lines in between $\mathrm{CMO}(\mathbb{R}^{n-1}, \mathbb{C}^N)$ and $\mathrm{VMO}(\mathbb{R}^{n-1}, \mathbb{C}^N)$. Analogously, we formulate a new brand of strong Carleson measure conditions and a characterization of $\mathrm{XMO}(\mathbb{R}^{n-1}, \mathbb{C}^N)$ in terms of the traces of solutions of elliptic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源