论文标题
关于皮肤病变细分深度学习的调查
A Survey on Deep Learning for Skin Lesion Segmentation
论文作者
论文摘要
皮肤癌是一个主要的公共卫生问题,可以从计算机辅助诊断中受益,以减轻这种常见疾病的负担。来自图像的皮肤病变细分是实现这一目标的重要一步。然而,存在天然和人工制品(例如,头发和气泡),内在因素(例如病变形状和对比度)以及图像获取条件的变化使皮肤病变细分使皮肤病变细分成为具有挑战性的任务。最近,各种研究人员探索了深度学习模型对皮肤病变细分的适用性。在这项调查中,我们盘问了177个研究论文,涉及对皮肤病变的深度学习分割。我们沿着几个维度分析了这些作品,包括输入数据(数据集,预处理和合成数据生成),模型设计(体系结构,模块和损失)以及评估方面(数据注释要求和细分性能)。我们从精选作品的角度以及从系统的角度来讨论这些维度,研究这些选择如何影响当前趋势,以及应如何解决其局限性。为了促进比较,我们在https://github.com/sfu-mial/skin-lesion-lesion-segentation-survey中概述了全面的表格中的所有检查作品以及在线提供的交互式表。
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online at https://github.com/sfu-mial/skin-lesion-segmentation-survey.