论文标题
经验X风险最小化的算法基础
Algorithmic Foundations of Empirical X-risk Minimization
论文作者
论文摘要
该手稿为机器学习和AI引入了一个新的优化框架,名为{\ bf经验X风险最小化(EXM)}。 X风险是一个介绍的术语,代表组成量度或目标家族,其中将每个数据点与大量项目显式或隐含以定义风险功能进行比较。它包括许多广泛使用的措施和不可兼容的损失的替代目标,例如AUROC,AUPRC,部分AUROC,NDCG,NDCG,MAP,PROCISION/RESSION/PROP $ K $位置,在某个召回水平上的精确度,列表中的损失,P-Norm损失,P-Norm推动,最大推动,全球对比的偏见,以及这些不可能的对象的文献,以及这些文献的优化构成,并构成了这些文献,并将其构成典型的属性和构建的出现,并将其构建效果构成,这些文献和这些均为构成的构想,这些文献和这些属性均可及其构建的构想,并构成了这些文献,并将其构成的序言构成了这些遗产。在机器学习,计算机视觉,信息检索等方面,优化这些目标在深度学习方面遇到了一些独特的挑战。在本文中,我们为EXM提供了最近的严格努力,重点是其算法基础及其应用。我们介绍了一类算法技术,用于求解具有光滑非凸目标的EXM。我们将EXM分别属于非凸组成优化,非凸出Min-Max优化和非凸dvex Bilevel优化的三个特殊家族。对于每个问题家族,我们提出了一些强大的基线算法及其复杂性,这将激发进一步的研究以改善现有结果。关于提出的结果和未来研究的讨论在最后进行。在\ url {www.libauc.org}中实现了用于优化各种X风化的有效算法。
This manuscript introduces a new optimization framework for machine learning and AI, named {\bf empirical X-risk minimization (EXM)}. X-risk is a term introduced to represent a family of compositional measures or objectives, in which each data point is compared with a large number of items explicitly or implicitly for defining a risk function. It includes surrogate objectives of many widely used measures and non-decomposable losses, e.g., AUROC, AUPRC, partial AUROC, NDCG, MAP, precision/recall at top $K$ positions, precision at a certain recall level, listwise losses, p-norm push, top push, global contrastive losses, etc. While these non-decomposable objectives and their optimization algorithms have been studied in the literature of machine learning, computer vision, information retrieval, and etc, optimizing these objectives has encountered some unique challenges for deep learning. In this paper, we present recent rigorous efforts for EXM with a focus on its algorithmic foundations and its applications. We introduce a class of algorithmic techniques for solving EXM with smooth non-convex objectives. We formulate EXM into three special families of non-convex optimization problems belonging to non-convex compositional optimization, non-convex min-max optimization and non-convex bilevel optimization, respectively. For each family of problems, we present some strong baseline algorithms and their complexities, which will motivate further research for improving the existing results. Discussions about the presented results and future studies are given at the end. Efficient algorithms for optimizing a variety of X-risks are implemented in the LibAUC library at \url{www.libauc.org}.