论文标题

良好的意图:通过意图信号传导自适应参数管理

Good Intentions: Adaptive Parameter Management via Intent Signaling

论文作者

Renz-Wieland, Alexander, Kieslinger, Andreas, Gericke, Robert, Gemulla, Rainer, Kaoudi, Zoi, Markl, Volker

论文摘要

参数管理对于大型机器学习(ML)任务的分布式培训至关重要。某些ML任务很难分发,因为参数管理的常见方法可能高效。高级参数管理方法(例如选择性复制或动态参数分配)可以提高效率,但是为此,通常需要手动将它们集成到每个任务的实现中,并且需要昂贵的前期实验才能正确调整。在这项工作中,我们探讨了是否可以避免这两个问题。我们首先提出了一种新型的意图信号机制,该机制将自然集成到现有的ML堆栈中,并为参数管理器提供有关参数访问的重要信息。然后,我们根据此机制描述ADAPM,这是一种完全自适应的,零调节的参数管理器。与先前的系统相反,此方法将提供信息(简单,由任务完成)分开,而不是有效地利用它(难以自动完成ADAPM)。在我们的实验评估中,ADAPM匹配或胜过最先进的参数管理器,这表明自动参数管理是可能的。

Parameter management is essential for distributed training of large machine learning (ML) tasks. Some ML tasks are hard to distribute because common approaches to parameter management can be highly inefficient. Advanced parameter management approaches -- such as selective replication or dynamic parameter allocation -- can improve efficiency, but to do so, they typically need to be integrated manually into each task's implementation and they require expensive upfront experimentation to tune correctly. In this work, we explore whether these two problems can be avoided. We first propose a novel intent signaling mechanism that integrates naturally into existing ML stacks and provides the parameter manager with crucial information about parameter accesses. We then describe AdaPM, a fully adaptive, zero-tuning parameter manager based on this mechanism. In contrast to prior systems, this approach separates providing information (simple, done by the task) from exploiting it effectively (hard, done automatically by AdaPM). In our experimental evaluation, AdaPM matched or outperformed state-of-the-art parameter managers out of the box, suggesting that automatic parameter management is possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源