论文标题

关于拉普拉斯操作员本征函数的本地化

On localisation of eigenfunctions of the Laplace operator

论文作者

Berg, Michiel van den, Bucur, Dorin

论文摘要

我们证明了(i)一个简单的几何条件,以定位一系列dirichlet eigenfunctions的序列,前提是相应的dirichlet laplacians满足了统一的耐磨不平等,并且(ii)将一系列dirichlet eigenlet序列定位,以换取广泛的伸长角类别的角色符号。我们提供了简单连接的,平面,多边形结构域的序列的示例,为此,与dirichlet或neumann,边界条件$κ$ localise in $ l^2 $中的第一个特征函数的相应序列。

We prove (i) a simple sufficient geometric condition for localisation of a sequence of first Dirichlet eigenfunctions provided the corresponding Dirichlet Laplacians satisfy a uniform Hardy inequality, and (ii) localisation of a sequence of first Dirichlet eigenfunctions for a wide class of elongating horn-shaped domains. We give examples of sequences of simply connected, planar, polygonal domains for which the corresponding sequence of first eigenfunctions with either Dirichlet, or Neumann, boundary conditions $κ$-localise in $L^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源