论文标题
BGK型具有最小熵的BGK型模型:I。基本思想
Discrete-velocity-direction models of BGK-type with minimum entropy: I. Basic idea
论文作者
论文摘要
在这一系列的作品中,我们开发了一个离散的速度方向模型(DVDM),该模型与BGK型碰撞用于模拟稀有流。与常规动力学模型(BGK和离散模型)不同,新模型将传输限制为有限的固定方向,但使运输速度成为1-D连续变量。与BGK方程相似,模型的离散平衡是通过最小化离散熵来确定的。在第一篇论文中,我们介绍了DVDM并研究了其基本属性,包括存在离散平衡和$ H $ -THEOREM。我们还表明,通过解决凸优化问题可以有效地获得离散平衡。拟议的模型为选择离散速度的计算实践选择离散速度提供了一种新的方法。它还促进了矩的扩展正交方法的方便多维扩展。我们通过数值实验验证模型,该模型以中等计算成本的两个基准问题。
In this series of works, we develop a discrete-velocity-direction model (DVDM) with collisions of BGK-type for simulating rarefied flows. Unlike the conventional kinetic models (both BGK and discrete-velocity models), the new model restricts the transport to finite fixed directions but leaves the transport speed to be a 1-D continuous variable. Analogous to the BGK equation, the discrete equilibriums of the model are determined by minimizing a discrete entropy. In this first paper, we introduce the DVDM and investigate its basic properties, including the existence of the discrete equilibriums and the $H$-theorem. We also show that the discrete equilibriums can be efficiently obtained by solving a convex optimization problem. The proposed model provides a new way in choosing discrete velocities for the computational practice of the conventional discrete-velocity methodology. It also facilitates a convenient multidimensional extension of the extended quadrature method of moments. We validate the model with numerical experiments for two benchmark problems at moderate computational costs.