论文标题
meta-sysid:一种同时识别和预测的元学习方法
Meta-SysId: A Meta-Learning Approach for Simultaneous Identification and Prediction
论文作者
论文摘要
在本文中,我们提出了Meta-Sysid,这是一种元学习方法,用于模拟由共同但未知法律支配的行为的模型集,并通过其上下文与众不同。受经典的建模和识别方法的启发,元赛义德学会通过共享参数来代表普通法,并依赖在线优化来计算系统特定的环境。与基于优化的元学习方法相比,类参数和上下文变量之间的分离减少了计算负担,同时允许批处理计算和简单的培训方案。我们在多项式回归,时间序列预测,基于模型的控制和现实世界交通预测域上测试元数据,从经验上发现其表现优于或与元学习基础线竞争。
In this paper, we propose Meta-SysId, a meta-learning approach to model sets of systems that have behavior governed by common but unknown laws and that differentiate themselves by their context. Inspired by classical modeling-and-identification approaches, Meta-SysId learns to represent the common law through shared parameters and relies on online optimization to compute system-specific context. Compared to optimization-based meta-learning methods, the separation between class parameters and context variables reduces the computational burden while allowing batch computations and a simple training scheme. We test Meta-SysId on polynomial regression, time-series prediction, model-based control, and real-world traffic prediction domains, empirically finding it outperforms or is competitive with meta-learning baselines.