论文标题

图像脱毛的多尺度频率分离网络

Multi-scale frequency separation network for image deblurring

论文作者

Zhang, Yanni, Li, Qiang, Qi, Miao, Liu, Di, Kong, Jun, Wang, Jianzhong

论文摘要

图像DeBlurring旨在恢复模糊图像中的详细纹理信息或结构,这已成为许多计算机视觉任务中必不可少的一步。尽管已经提出了各种方法来处理图像去除问题,但大多数方法都将模糊图像视为一个整体,并忽略了不同图像频率的特征。在本文中,我们提出了一种新方法,称为图像去膨胀的多尺度频率分离网络(MSFS-NET)。 MSFS-NET将频率分离模块(FSM)引入编码器 - 码头网络体系结构中,以在多个尺度上捕获图像的低频和高频信息。然后,分别设计了一个循环一致性策略和对比度学习模块(CLM)(CLM),以保留低频信息,并在DeBlurring期间恢复高频信息。最后,不同尺度的特征是通过跨尺度特征融合模块(CSFFM)融合的。基准数据集的大量实验表明,所提出的网络可实现最新的性能。

Image deblurring aims to restore the detailed texture information or structures from blurry images, which has become an indispensable step in many computer vision tasks. Although various methods have been proposed to deal with the image deblurring problem, most of them treated the blurry image as a whole and neglected the characteristics of different image frequencies. In this paper, we present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring. MSFS-Net introduces the frequency separation module (FSM) into an encoder-decoder network architecture to capture the low- and high-frequency information of image at multiple scales. Then, a cycle-consistency strategy and a contrastive learning module (CLM) are respectively designed to retain the low-frequency information and recover the high-frequency information during deblurring. At last, the features of different scales are fused by a cross-scale feature fusion module (CSFFM). Extensive experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源