论文标题

部分可观测时空混沌系统的无模型预测

Federated Learning under Distributed Concept Drift

论文作者

Jothimurugesan, Ellango, Hsieh, Kevin, Wang, Jianyu, Joshi, Gauri, Gibbons, Phillip B.

论文摘要

分布式概念漂移下的联合学习(FL)是一个未开发的领域。尽管概念漂移本身就是一个充分研究的现象,但它给FL带来了特殊的挑战,因为漂移在时间和空间(跨客户)中散布。据我们所知,这项工作是第一个在两个维度中明确研究数据异质性的工作。我们首先证明,使用单个全局模型的漂移适应性的先前解决方案不适合交错漂移,因此需要多种模型解决方案。我们将漂移适应的问题确定为随时间变化的聚类问题,我们提出了两种新的聚类算法,以根据局部漂移检测和分层聚类对漂移做出反应。经验评估表明,我们的解决方案的准确性明显高于现有基准,并且与理想化的算法相媲美,并且在每个时间步骤中,客户对客户的基础群集的地面群集与概念相媲美。

Federated Learning (FL) under distributed concept drift is a largely unexplored area. Although concept drift is itself a well-studied phenomenon, it poses particular challenges for FL, because drifts arise staggered in time and space (across clients). To the best of our knowledge, this work is the first to explicitly study data heterogeneity in both dimensions. We first demonstrate that prior solutions to drift adaptation that use a single global model are ill-suited to staggered drifts, necessitating multiple-model solutions. We identify the problem of drift adaptation as a time-varying clustering problem, and we propose two new clustering algorithms for reacting to drifts based on local drift detection and hierarchical clustering. Empirical evaluation shows that our solutions achieve significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering of clients to concepts at each time step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源