论文标题

伯克利格W中的完全相对论$ GW $/BETHE-SALPETER计算:实施,对称,基准测试和性能

Fully relativistic $GW$/Bethe-Salpeter calculations in BerkeleyGW: implementation, symmetries, benchmarking, and performance

论文作者

Barker, Bradford A., Deslippe, Jack, Lischner, Johannes, Jain, Manish, Yazyev, Oleg V., Strubbe, David A., Louie, Steven G., .

论文摘要

通常通过处理$ GW $校正和旋转轨耦合作为对密度功能障碍的密度功能理论的单独互动,将$ GW $ quasiparticle带和与旋转轨道耦合的材料计算带有自旋轨耦合的材料的材料的吸收光谱。但是,与强旋轨耦合的材料的准确处理通常需要使用Kohn-Sham方程中的Spinor波函数和$ GW $/BSE的旋转波函数进行完全相对论的方法。此类计算直到最近才可用,特别是对于BSE。我们已经在飞机波伪电势$ GW $/BSE代码Berkeleygw中实现了这种方法,该代码高度平行,在电子结构社区中广泛使用。我们提出了与固体固体的固体相结构和光吸收光谱的参考结果,这些固体具有不同强度的自旋轨道耦合,包括SI,GE,GAAS,GAAS,GAAS,GAS,GAS,CDSE,CDSE,AU和BI $ _2 $ SE $ _3 $。这些系统的计算出的准粒子带隙被发现与几十MEV之内的实验一致。用全相关的$ GW $ -BSE计算出的GASB的吸收光谱捕获了光谱中峰的大型自旋轨道分裂。对于Bi $ _2 $ SE $ _3 $,与DFT相比,我们发现低能频段的变化发生了巨大变化,对$ GW $近似的完全相互处理,可以正确地捕获价值和传统频段的抛物线性质,包括偏离型自动型自我Energy Matrix elements。我们介绍了详细的方法,旋转器的空间对称性方法,与其他代码的比较以及与无旋转的$ GW $/BSE计算和SOC的扰动方法相比。这项工作旨在促进激发状态研究软件中的Spinor $ GW $/BSE方法的进一步开发。

Computing the $GW$ quasiparticle bandstructure and Bethe-Salpeter Equation (BSE) absorption spectra for materials with spin-orbit coupling has commonly been done by treating $GW$ corrections and spin-orbit coupling as separate perturbations to density-functional theory. However, accurate treatment of materials with strong spin-orbit coupling often requires a fully relativistic approach using spinor wavefunctions in the Kohn-Sham equation and $GW$/BSE. Such calculations have only recently become available, in particular for the BSE. We have implemented this approach in the plane-wave pseudopotential $GW$/BSE code BerkeleyGW, which is highly parallelized and widely used in the electronic-structure community. We present reference results for quasiparticle bandstructures and optical absorption spectra of solids with different strengths of spin-orbit coupling, including Si, Ge, GaAs, GaSb, CdSe, Au, and Bi$_2$Se$_3$. The calculated quasiparticle band gaps of these systems are found to agree with experiment to within a few tens of meV. The absorption spectrum of GaSb calculated with the fully-relativistic $GW$-BSE captures the large spin-orbit splitting of peaks in the spectrum. For Bi$_2$Se$_3$, we find a drastic change in the low-energy bandstructure compared to that of DFT, with the fully-relativistic treatment of the $GW$ approximation correctly capturing the parabolic nature of the valence and conduction bands after including off-diagonal self-energy matrix elements. We present the detailed methodology, approach to spatial symmetries for spinors, comparison against other codes, and performance compared to spinless $GW$/BSE calculations and perturbative approaches to SOC. This work aims to spur further development of spinor $GW$/BSE methodology in excited-state research software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源