论文标题
关于稳定的曲奇kähler-icci solitons的几何形状
On geometry of steady toric Kähler-Ricci solitons
论文作者
论文摘要
在本文中,我们研究了非紧凑型曲折的梯度稳定的kähler-icci soliton指标。我们表明,这种歧管的自由基因轨道的轨道空间带有自然的黑森结构,并带有非负面的bakry-émery张量。我们概括了Calabi的经典刚性结果,并使用它来证明任何完整的$ \ Mathbf T^n $ -invariant梯度稳定稳定的Kähler-ricci soliton具有免费的圆环动作都必须是平面$(\ Mathbb c^**)^n $。
In this paper we study the gradient steady Kähler-Ricci soliton metrics on non-compact toric manifolds. We show that the orbit space of the free locus of such a manifold carries a natural Hessian structure with a nonnegative Bakry-Émery tensor. We generalize Calabi's classical rigidity result and use this to prove that any complete $\mathbf T^n$-invariant gradient steady Kähler-Ricci soliton with a free torus action must be a flat $(\mathbb C^*)^n$.