论文标题

网络系统的数据驱动线性koopman嵌入:模型预测性网格控制

Data-Driven Linear Koopman Embedding for Networked Systems: Model-Predictive Grid Control

论文作者

Hossain, Ramij R., Adesunkanmi, Rahmat, Kumar, Ratnesh

论文摘要

本文介绍了非线性网络动力学的数据学习的线性koopman嵌入,并使用它来实现电力网络中的实时模型预测紧急电压控制。该方法涉及一个新颖的数据驱动的``基础 - 词式自由''将动力学的抬高到较高的尺寸线性空间中,在该空间上进行了MPC(模型预测控制),使其可扩展且可以快速实时实施。Koopman启发的深度神经网络(KDNN)的构造构造,用于构造的动态构造,以构造的构造,以构造的构造,并构成了构造,并构成了构造的构造,以实现构造,并构成了启动的构造,以实现构造,以实现构造,以实现构造,并实现了启动的构造。从系统轨迹数据中学到的KDNN的端到端组成部分是一个GO:基于神经网络(NN)的升降机(NN)的较高维度,在该更高维度内的线性动力学,以及基于NN的基于NN的基于NN的预测。径向)用于提升到更高维度线性空间的常规方法。

This paper presents a data-learned linear Koopman embedding of nonlinear networked dynamics and uses it to enable real-time model predictive emergency voltage control in a power network. The approach involves a novel data-driven ``basis-dictionary free" lifting of the system dynamics into a higher dimensional linear space over which an MPC (model predictive control) is exercised, making it both scalable and rapid for practical real-time implementation. A Koopman-inspired deep neural network (KDNN) encoder-decoder architecture for the linear embedding of the underlying dynamics under distributed controls is presented, in which the end-to-end components of the KDNN comprising of a triple of transforms is learned from the system trajectory data in one go: A Neural Network (NN)-based lifting to a higher dimension, a linear dynamics within that higher dimension, and an NN-based projection to the original space. This data-learned approach relieves the burden of the ad-hoc selection of the nonlinear basis functions (e.g., polynomial or radial) used in conventional approaches for lifting to higher dimensional linear space. We validate the efficacy and robustness of the approach via application to the standard IEEE 39-bus system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源