论文标题

检测隐藏的目标和互动目标减少

Detection of Hidden Objectives and Interactive Objective Reduction

论文作者

Shavarani, Seyed Mahdi, López-Ibáñez, Manuel, Allmendinger, Richard

论文摘要

在多目标优化问题中,可能存在对决策者重要但没有优化的隐藏目标。另一方面,可能存在优化的目标,但对DM的重要性较小。这里出现的问题是是否可以检测和减少无关的目标而不会恶化最终结果的质量?实际上,在处理多目标问题时,每个目标都意味着如果可能的话,最好避免使用巨大的成本。但是,现有与目标减少目标有关的方法是计算密集的,而忽略了决策者的偏好。在本文中,我们提出了一种方法来利用交互式进化多目标优化算法(EMOAS)的能力以及决策者提供的偏好信息,以检测和消除优化过程中无关的目标,并用隐藏的目标替换为隐藏的目标。提出的基于单变量特征选择的方法在计算上是有效的,并且可以集成到任何基于排名的交互式EMOA中。使用本研究中出现的合成问题,我们激励实验中的不同情况,并证明了提出方法在改善计算成本,客观评估总数和最终解决方案质量方面的有效性。

In multi-objective optimization problems, there might exist hidden objectives that are important to the decision-maker but are not being optimized. On the other hand, there might also exist irrelevant objectives that are being optimized but are of less importance to the DM. The question that arises here is whether it is possible to detect and reduce irrelevant objectives without deteriorating the quality of the final results? In fact, when dealing with multi-objective problems, each objective implies a significant cost best avoided if possible. However, existing methods that pertain to the reduction of objectives are computationally intensive and ignore the preferences of the decision-maker. In this paper, we propose an approach to exploit the capabilities of interactive evolutionary multi-objective optimization algorithms (EMOAs) and the preference information provided by the decision-maker, to detect and eliminate the irrelevant objectives during the optimization process and replace them with hidden ones, if any. The proposed method, which is based on univariate feature selection, is computationally effective and can be integrated into any ranking-based interactive EMOA. Using synthetic problems developed in this study, we motivate different scenarios in the experiments and prove the effectiveness of the proposed method in improving the computational cost, the total number of objective evaluations, and the quality of the final solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源