论文标题

广义流体流的几何形状

Geometry of generalized fluid flows

论文作者

Izosimov, Anton, Khesin, Boris

论文摘要

在V. Arnold之后,可以将理想(即无可挑剔的不可压缩)流体的Euler方程视为在流量域中的右界不变$ l^2 $ metric的测量流量。在本文中,我们描述了广义流,多相流体(均质涡流片)和常规涡流片的共同起源和对称性:它们都对应于多形差异性的某些组素质的大地测量。此外,我们证明,所有这些问题都是哈密顿式的,就双重谎言代数的泊松结构而言,在谎言代数二重奏上概括了欧拉方程的哈密顿属性。

The Euler equation of an ideal (i.e. inviscid incompressible) fluid can be regarded, following V.Arnold, as the geodesic flow of the right-invariant $L^2$-metric on the group of volume-preserving diffeomorphisms of the flow domain. In this paper we describe the common origin and symmetry of generalized flows, multiphase fluids (homogenized vortex sheets), and conventional vortex sheets: they all correspond to geodesics on certain groupoids of multiphase diffeomorphisms. Furthermore, we prove that all these problems are Hamiltonian with respect to a Poisson structure on a dual Lie algebroid, generalizing the Hamiltonian property of the Euler equation on a Lie algebra dual.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源