论文标题

部分可观测时空混沌系统的无模型预测

Optimal Control for Unmanned Systems with One-way Broadcast Communication

论文作者

Ge, Chao, Chen, Ge

论文摘要

无人系统(USS),包括无人驾驶汽车,无人管理的水下车辆和无人接地车,在军事和民事领域的应用前景很高,其中在其中找到可行和最佳途径的USS代理的过程是内核问题。在快速时变和较差的沟通环境下,传统的路径查找算法很难实时地实时获得最佳路径。我们在沟通环境不良,移动目标,雷达(或声纳)和导弹(或鱼雷)的假设下,根据单向广播通信模式为USS提出了一种在线最佳控制算法。凭借逐渐消退的原理,然后通过低计算要求,由神经网络和梯度优化技术的近似理论和梯度优化技术的近似理论生成最佳(或次优)路径。另外,我们为我们的算法提供了收敛分析,并表明在某些条件下,在某些条件下,目标,目标和雷达无线电物可以在有限的时间内达到目标。此外,模拟表明,USS中的代理可以使用我们的算法实时生成最佳(或次优)路径,同时有效避免与其他代理发生碰撞或敌方雷达检测。

Unmanned systems (USs) including unmanned aerial vehicles, unmanned underwater vehicles, and unmanned ground vehicles have great application prospects in military and civil fields, among which the process of finding feasible and optimal paths for the agents in USs is a kernel problem. Traditional path finding algorithms are hard to adequately obtain optimal paths in real-time under fast time-varying and poor communication environments. We propose an online optimal control algorithm for USs based on a one-way broadcast communication mode under the assumption of a poor communication environment, mobile targets, radars (or sonar), and missiles (or torpedoes). With the principle of receding horizon control, optimal (or suboptimal) paths are then generated by the approximation theory of neural networks and gradient optimization techniques, with low computation requirements. Also, we give a convergence analysis for our algorithm, and show that each agent can reach its target in finite time under some conditions on agents, targets and radar-missiles. Moreover, simulations demonstrate that the agents in USs can generate optimal (or suboptimal) paths in real time using our algorithm while effectively avoiding collision with other agents or detection by enemy radars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源