论文标题

磁场结构的限制因素可从上的变异性增强物体

Constraints on the magnetic field structure in accreting compact objects from aperiodic variability

论文作者

Mönkkönen, Juhani, Tsygankov, Sergey S., Mushtukov, Alexander A., Doroshenko, Victor, Suleimanov, Valery F., Poutanen, Juri

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We investigate the aperiodic variability for a relatively large sample of accreting neutron stars and intermediate polars, focusing on the properties of the characteristic break commonly observed in power spectra of accreting objects. In particular, we investigate the relation of the break frequency and the magnetic field strength, both of which are connected to the size of the magnetosphere. We find that for the majority of objects in our sample the measured break frequency values indeed agree with estimated inner radii of the accretion disc, which allows to use observed break frequencies to independently assess the magnetic field strength and structure in accreting compact objects. As a special case, we focus on Hercules X-1 which is a persistent, medium-luminosity X-ray pulsar accreting from its low-mass companion. In the literature, it has been suggested that the complex pulse profiles, the spin-up behaviour and the luminosity-correlation of the cyclotron energy seen in Her X-1 can be explained with a complex magnetic field structure of the neutron star. Here, we connect the measured break frequency to the magnetospheric radius and show that the magnetic field strength derived assuming a dipole configuration is nearly an order of magnitude smaller than the magnetic field strength corresponding to the cyclotron energy. Accordingly, this discrepancy can be explained with the magnetic field having strong multipole components. The multipolar structure would also increase the accreting area on the neutron star surface, explaining why the critical luminosity for accretion column formation is puzzlingly high in this source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源