论文标题

部分可观测时空混沌系统的无模型预测

Supercyclic vectors of operators on normed linear spaces

论文作者

Ansari, Mohammad

论文摘要

我们对Faghih-Ahmadi和Hedayatian提出的有关超级环保媒介的问题给出了肯定的答案。我们表明,如果$ \ MATHCAL X $是无限维度的线性线性空间,而$ t $是$ \ Mathcal X $的超级环保操作员,那么对于任何超级环保矢量$ x $ for $ t $来说,存在严格增加的序列$(n_k)_k $的正整数$}的$ n y _k $ a; k \ ge 1 \} $不是整个$ \ mathcal x $。

We give an affirmative answer to a question asked by Faghih-Ahmadi and Hedayatian regarding supercyclic vectors. We show that if $\mathcal X$ is an infinite-dimensional normed linear space and $T$ is a supercyclic operator on $\mathcal X$, then for any supercyclic vector $x$ for $T$, there exists a strictly increasing sequence $(n_k)_k$ of positive integers such that the closed linear span of the set $\{T^{n_k}x: k\ge 1\}$ is not the whole $\mathcal X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源